Public Health Agency of Canada
Symbol of the Government of Canada

Share this page

Canada Communicable Disease Report
CCDR Weekly

ARCHIVED - Infectious Diseases News Brief - December 14, 2012

Warning This page has been archived.

Archived Content

Information identified as archived on the Web is for reference, research or recordkeeping purposes. It has not been altered or updated after the date of archiving. Web pages that are archived on the Web are not subject to the Government of Canada Web Standards. As per the Communications Policy of the Government of CanadaExternal link, you can request alternate formats on the "Contact Us" page.

[Current Issue - Table of contents]

Zoonotic Virus Related To SARS Could Pass From Animals To Humans Repeatedly

The SARS epidemic of 2002-2003 was short-lived, but a novel type of human coronavirus that is alarming public health authorities can infect cells from humans and bats alike, a fact that could make the animals a continuing source of infection, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology. The new coronavirus, called hCoV-EMC, is blamed for five deaths and several other cases of severe disease originating in countries in the Middle East. According to the new results, hCoV-EMC uses a different receptor in the human body than the SARS virus, and can infect cells from a wide range of bat species and pigs, indicating there may be little to keep the virus from passing from animals to humans over and over again. First identified in a patient in Saudi Arabia in June, nine laboratory-confirmed cases of hCoV-EMC infection have now been identified, five of whom have died. Although the virus does not apparently pass from person-to-person very readily, the case fatality rate and the fact that the source of the virus has not been identified have caused concern among global public health authorities. Cases of hCoV-EMC infection are marked by severe pneumonia and often by kidney failure. "This virus is closely related to the SARS virus, and looking at the clinical picture, it causes the same pattern of disease," says Christian Drosten of the University of Bonn Medical Centre in German, a lead author of the study. Given the similarities, Drosten and his colleagues wanted to know whether hCoV-EMC and SARS might use the same receptor, a sort of molecular "dock" on human cells that the virus latches onto to gain entry to the cell. The SARS receptor, called ACE2, is found mostly on pneumocytes deep within the human lung, so an individual must breathe in many, many SARS viruses for a sufficient number of them to reach this susceptible area and cause an infection. Drosten says this simple fact helped ensure the SARS outbreak didn't spread like wildfire and was mostly limited to healthcare workers and residents of overcrowded housing in Hong Kong. Also, once a person was infected with SARS in the deep part of their lungs, he or she felt sick almost immediately and therefore was not active in the community and infecting others, another aspect of the receptor that helped curb the outbreak. Does hCoV-EMC use the same receptor? If so, the means of controlling this new virus might become clearer. "The answer is a clear no," says Drosten. "This virus does not use ACE2." This leaves open the possiblity that hCoV-EMC could use a receptor in the human lung that is easier to access and could make the virus more infectious than SARS, but it is still not known what receptor the virus does use. To help identify how hCoV-EMC might have originated and moved between humans and animals, the second part of the study focused on the animal species the virus can infect. SARS is closely related to viruses from bats, but Drosten says the virus changed in the transition from bats to civet cats to humans and could no longer infect bats, so SARS was not present in the wild and did not pass repeatedly from bats to humans like a classical zoonotic disease. Like SARS, hCoV-EMC is most closely related to coronaviruses from bats, but unlike SARS, this study found that hCoV-EMC can still infect cells from many different species of bats. The virus is also able to infect cells from pigs, indicating that it uses a receptor structure that all these animals have in common. If that receptor is present in mucosal surfaces, like the lining of the lung, it is possible the virus could pass from animals to humans and back again, making animals an ongoing source of the virus that would be difficult or impossible to eliminate.

Source: Medical News Today 13 December 2012 External site

Childhood Tuberculosis and Malnutrition

Despite the burden of both malnutrition and tuberculosis in children worldwide, there are few studies on the mechanisms that underlie this relationship. From available research, it appears that malnutrition is a predictor of tuberculosis disease and is associated with worse outcomes. This is supported through several lines of evidence, including the role of vitamin D receptor genotypes, malnutrition's effects on immune development, respiratory infections among malnourished children, and limited work specifically on pediatric tuberculosis and malnutrition. Nutritional supplementation has yet to suggest significant benefits on the course of tuberculosis in children. There is a critical need for research on childhood tuberculosis, specifically on how nutritional status affects the risk and progression of tuberculosis and whether nutritional supplementation improves clinical outcomes or prevents disease.

Source: The Journal of Infectious Diseases, (2012) 206 (12):1809-1815 External site